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Abstract. An ab initio valence bond method based on finite-sized clusters is proposed for
caleulating the non-linear electric susceptibilities of covalent solids, particularly those that
are directly related to their efficiency for second-barmonic generation. It is presented as
a radical alternative 1o electronic band-structure methods for these dielectric response
functions and it is applied here to two Si surfaces. In its present form it is limited to
the response to static fields. Linear and non-linear parts of the clectric susceptibility are
obtained from generalized valence bond calculations on clusters representing gallium- and
arsenic-lerminated (1 x 1) Si(111) surfaces. In the valence bond model for these covalent
systems the self-consistent orbitals are localized in bond pairs and lone pairs. Electric
susceplibilities are constructed by summing bond polarizabilities or hyperpolarizabilities
of electron pairs in the surface layer. The major sources of non-linear polarization in
the cluster lie along bond axes; hence optical second-harmonic generation at a covalently
bonded surface may depend strongly on the surface structure. An additional major source
of non-linear polarization exists perpendicular to the axes of bent bonds which becomes
dominant when the bond is severely bent. Calcuiated non-linear susceptibilities are in
good agreement with absolute measurements of second-harmonic generation intensity.

1. Introduction

In the early 1970s, Levine [1] developed a phenomenological bond charge model
for calculating non-linear susceptibilities of covalent and polar—covalent solids. This
involved analytic expressions for bond non-linearity in terms of differences in covalent
radii and ionicity of the bonded pair of atoms, and the average band gap of the
material. Levine’s method proved very successful in quantitatively predicting non-
linear susceptibilities and in explaining trends in susceptibility as a function of ionicity
etc. Around the same time, Jha and Bloembergen [2] and Flytzanis and Ducuing [3]
calculated the low-frequency limits of non-linear susceptibilities of III-V compounds
using tetrahedral bond orbital models. There were also early calculations, based on
electronic band-structure techniques, by Aspnes [4] and Fong and Shen [5], and these
techniques are still being used. However, when band-structure techniques are applied
to materials with primitive unit cells much larger than that of diamond, there are
difficulties in identifying the sources of non-linear polarization in the solid: there are
also enormous demands on computer time. The calculation, when formulated in terms
of perturbation theory and band-structure, expands rapidly with the size of the system
and is not practicable for many systems for which a theoretical calculation of the
non-linear susceptibility is highly desirable. This is illustrated by a recent pioneering
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calculation of second-harmonic generation in odd-period Si, Ge, superlattices and
at the SiGe interface [6]. For the superlattice material, Si;Ge,, the calculation
required 90 hours of supercomputer time {6]. A method is therefore sought that is
fundamental, computationally inexpensive and will readily yield a simple mode] for
sources of non-linear polarization in the solid. The work cited may provide a clue to
development of such a model, in as much as the results were seen to be consistent
with additive bond contributions [6]. A return to the bond model is thereby suggested.

In the method to be presented below, non-linear susceptibility matrices derived
from bond hyperpolarizabilities are calculated, without adjustment of parameters, for
gallium- and arsenic-terminated (1 x 1} Si(111) surfaces. These matrices describe
the response of the surface charge density to electric fields, and their calculation is
central to understanding the optical response at surfaces and interfaces. Linear and
non-linear polarizabilities are obtained by applying electric fields to clusters (figure 1)
which represent the surfaces, and calculating the polarization of localized bond or-
bitals as a function of applied field strength. The calculation is formulated in terms
of responses of electron pairs (bond pairs and lone pairs) which are summed over
the unit cell to give the total response.

Figure L Schematic representation of a custer
calculation. Top: duster of atoms used to caleulate
response properties of the bond between the wo
atoms in region A. The next shell of atoms, B,
provides an electronic environment for the bond in
A which represents the remainder of the surface or
bulk of the solid being modelled. The final shell,
C, is an artiffcial termination by pseudo-hydrogen
atoms. Middle: the valence bond model naturally
yields occupied bond orbitals localized on all bonds.
Bottom: the change in the electric field at the bond
in region A from dipoles induced in surrounding
bonds, together with the externally applied field,
constitute the local field at the bond in region A
This feld is computed, ab nitio, at points along the
A bond axis. This allows the response of the bond
in region A, caleulated by applying a field to the
cluster, to be comrected for effects of interaction
with other bonds.

Long.range (dipolar) interactions between polarized bonds cannot be neglected
in summing responses of bonds to an applied field. Thus there is no simple additivity
of bond polarizability and hyperpolarizability that would yield the overall linear and
non-linear responses of the solid. A particular bond is polarized by the applied field
together with the field arising from dipoles induced within the solid or at the surface.
The combination of these fields is the Jocal field which is discussed in more detail
below. A static field is applied in a self-consistent-field (SCF) cluster calculation which
polarizes bonds in the cluster (figure 1). Induced dipolar fields are present in the SCF
charge density. However, these fields are specific to the particular cluster and differ
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from the fields in a macroscopic surface. It is therefore necessary to cbtain bond
parameters for bonds that are independent of the surrounding bonds, in order that
ciuster calculations may give results which are transferable to macroscopic surfaces
or bulk solids. These are obtained by computing the local field acting on a particular
bond and fitting the bond parameters from the bond response to the locai field.
The response of a macroscopic surface or bulk solid to an applied field is obtained
in a second calculation of the polarization using these independent bonds coupled
by dipolar fields. Independent bond parameters are termed ‘bare’ while parameters
fitted using only the applied field are termed ‘dressed’. In certain respects, the
approach developed here is similar to the interacting segment model (1sM) of Miller,
Orr and Ward [7]. In the IsM, electrostatic interaction between adjacent segments of
a molecule is taken into account and this was shown to give substantial improvement
over simple bond additivity as a basis for understanding electric tensor properties of
chlorofluorocarbon molecules.

Within the valence bond model of electronic structure for molecules and solids,
bond types may be classified according to the number of spin-paired orbitals localized
between a pair of bonded nuclei, and their shapes. In solids, bonds are usually single
bonds, there being only a single pair of spin-paired orbitals localized between the
nuclei, but in molecular systems, especially carbor molecules, there are commonly
double and triple bonds with four or six localized orbitals spin-paired into two- or
three-bent-bond arrangements [8]. If the shapes of these orbitals are compared be-
tween one molecule and another containing, according to this simple analysis, the
same type of bond, a remarkable degree of similarity is usually found in the shapes of
the localized valence bond orbitals {9, 10]. However, the possible change in the po-
larizability and hyperpolarizability for two bond pairs of the same type in similar, but
not identical, electronic environments is as yet unknown. For example, Si-Si bonds
occur both in bulk Si and Si-Ge superlattices, but without performing calculations
on clusters representing both of these, it is impossible to say whether there will be
a marked difference between the independent bond parameters determined for the
Si-Si bond in bulk Si compared to the same bond type in the Si-Ge superiattice,
due to different surrounding bonds (Si-Si, Si-Ge and Ge-Ge versus only Si-Si). At
this stage we use the similarity in shapes of orbitals in the strong fields of nuclei
and neighbouring electron pairs in different molecules as a plausibility argument that
bond responses in relatively weak externally applied fields should also be similar. A
calcuiation of linear and non-linear bond polarizabilities, which contribute indepen-
dently (apart from the interaction mentioned above) to the optical properties of a
bulk solid or surface, is therefore envisaged.

While the derived bond parameters can be applied to a number of response
properties of bulk solids and their surfaces, the emphasis here is on calculating the
(non-resonant) optical second-harmonic response. Optical second-harmonic gener-
ation (SHG) is still in its early stages of development as a technique for studying
surfaces and interfaces [11--14]. Its surface and interface sensitivity arises because the
bulk second-order response is zero in a centrosymmetric medium within the dipole
approximation. For a material such as crystalline silicon, the surface can dominate
the second-harmonic response at certain excitation frequencies [11]. Generally, sur-
face SHG experiments are carried out with incident photon energies in the range 1
to 3 eV, where the excitation or second-harmonic fields may cause direct transitions
between surface and interface states and therefore, resonant behaviour, producing a
strong variation in optical properties.
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The specific connection between bond polarizabilities and second-harmonic gen-
eration is as follows: the second-harmonic intensity depends on the square of the
second-order polarization in the solid, P,-(z). The total polarization, P, per unit vol-
ume (equation (1)) is usuvally expressed as a polynomial series in the applied field
strength, E, where the susceptibility coefficients are independent of field strength but
will, in general, depend on the frequency of the applied field:

Py = (X E; + XA B By + ) W

where ¢, is the vacuum permittivity and x(™) is the susceptibility at mth order in
field strength. So the second-harmonic intensity depends on xfﬂ E; E;. In sections

following we show how xfﬂ may be obtained as a sum over second-order bond
polarizabilities.

2. Structures

Calculations are presented for two Si(111) surfaces, terminated in a 1 x 1 surface unit
cell either by As or Ga. The major motivation for studying the optical properties of
these surfaces theoretically was that parallel, experimental SHG and surface Raman
studies have been performed in this laboratory [15] and elsewhere [16] and a tight-
binding band-structure calculation for the second-harmonic response of As-terminated
Si(111) was also in progress [17]. The As-terminated surface was initially studied by
Uhrberg et al [18], who measured the surface band-structure and calculated the
surface states. Since then this surface has been extensively studied by theoretical
[17-21] and experimental [18, 22, 23] methods. The structure of the surface is known
from x-ray standing wave [22] and medium-energy ion scattering experiments [23]: the
As atoms that replace the last layer of Si atoms are relaxed 0.22 A outwards from the
bulk-terminated Si(111) positions. Theoretical calculations for the surface structure
based on periodic boundary conditions [18] and cluster techniques [20] are in good
agreement with the experimentally determined structure. The 1 x 1 Ga-terminated
surface has not been so thoroughly studied. Its surface structure has been studied
experimentally by LEED [24], the x-ray standing wave technique [24] and scanning
tunnelling microscopy [25] and the surface structure has been calculated by a density
functional technique [24]. LEED studies indicate that there may be weakly bound
Ga present in a Ga monolayer on Si(111) {24], in addition to the Ga bonded in
the substitutional sites (which are equivalent to those occupied by As) or the ‘1 x 1
surface may relieve strain by incorporating an ordered missing Ga defect structure
[24]. The surface structure determined by x-ray standing waves has the substitutional
Ga atoms 0.50 & 0.02 A below the bulk-terminated Si(111) positions, and this large
inwards relaxation of the Ga atom agrees with the Si-Ga bond length of 223 A
[24] calculated by the density functional technique, which is 9% smaller than the
sum of the covalent radii and corresponds to an inwards relaxation of 0.59 A. An
inward relaxation of 0.16 A (corresponding to a Si—Ga bond length of 2.30 A, 6%
shorter than the sum of covalent radii) was obtained by us in a cluster calculation
of the minimum energy position for Ga in the 1 x 1 substitutional site, identical in
methodology to a previous calculation of the equilibrium position of As in the same
site {20]. Calculations described below were performed with the As or Ga atoms at
their equilibrivm computed bond lengths. '
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3. Application of cluster calculations to response properties

In this section the difficulties inherent in using clusters to mode! optical properties of
solids are discussed. In particular, attention is given to how the edges of clusters are
treated, why the Jocalized orbitals of a generalized valence bond (GVB) wave function
make it especially suitable for cluster modelling of optical properties, and how the
local field mentioned above is to be calculated.

Cluster techniques have been successful in predicting surface [20, 26] and bulk
defect {27-29)] structures and they have been used to interpret chemical bonding in
these structures [20, 26, 27]. Wave functions based on valence bond, Hartree-Fock
(HF), density functional techniques etc are computed for a cluster chosen to represent
a particular system, which must be terminated appropriately [27]. In making the
assumption that, for example, a macroscopic surface can be adequately represented
by a small cluster of atoms, the ground state charge density is implicitly assumed to be
largely determined by the local configuration of atoms. This is expected to be a very
good approximation for metals since any static, external perturbation is screened by
the valence electrons over short distances; in a semiconductor the approximation is not
expected to be as good. However, cluster modelling of covalently bonded materials
by valence bond methods is simpler than for metals because the valence orbitals of
the covalent materiai localize in well-defined bond repgions. Cowvalent clusters can
therefore be terminated economically in an obvious way, using hydrogen-like atoms.
Such cluster-terminating atoms are used in this work: they preserve charge neutrality
of silicon atoms to which they are bonded [26, 27].

The second important consideration is concerned with the functional form of
cluster wave function (GVB, HF etc). A wave function that facilitates partitioning of
the charge density into ‘representative’ and ‘terminating’ parts is required, the former
referring to those parts of the charge density that are to be identified with parts of the
unit cell being modelled, and the latter to those that belong to the terminating-atom
bonds. The GVB wave function [30] provides such a separation since the orbitals of
this wave function are localized. It has the form

Vavp = Ald1ad1pPoadon: - - Enadne] © @

where A is the antisymmetrization operator, ¢, and ¢,y are a pair of overlapping,
singly occupied orbitals and © is the spin function which is a sum of spin eigen-
functions. In principle, all GVB orbitals may overlap to an extent determined in the
self-consistency process, and © is a complete set of spin eigenfunctions. This wave
function is computationally complex but considerable simplification can be obtained
by introducing the strong orthogonality and perfect pairing approximations [30], in
which electron pairs are constrained to be orthogonal io one another and only the
perfect pairing spin eigenfunction, @, with the form

@, = (af — Ba)(af — fo) (af - fa). .. (3)

is retained. A more extensive description of this wave function, and its relationship to
others incorporating electron correlation effects and the HF wave function, was given
recently [10].

The orbitals of a GVB wave function partition the charge density into bonds within
the representative part of the cluster and those between the representative part and
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the terminating atoms. More exactly, it is impossible to separate the cluster response
in the same way since, for example, the induced dipoles of each part interact strongly,
as noted in section 1. Indeed it will be shown that the induced fields can be as large
as the applied field. The locai field that acts on the representative part of the cluster
charge density is therefore unique to the cluster, but the total electric field at any
point in the cluster can be computed and so can the local field at a bond arising from
all other induced dipoles.

The local field acting at a given bond was defined as the applied field plus the in-
duced field arising from polarization of all charges except the bond itself. This differs
in its definition from the conventional local field effect’ of semiconductor dielectric
theory {(appendix A). Induced fields vary on the scale of interatomic distances in the
solid, but the simple approximation of weighting the induced field along a bond by
the charge density of the bond orbital gives an average local field for the whole bond,
when added to the applied field. ‘Dressed’ polarizabilities, «,, ;;, and hyperpolariz-
abilities, By, ;;x; Ya,ijx (appendix B), for the nth bond pair are obtained by fitting
induced dlpo es in the bond orbitals Py, to the expression

Pri =€ (@i B + B i B By + .. ) Q)

where £, and E| are components of the applied field, E. ‘Bare’ polarizabilities,
O i and hyperpolanzabﬂmes, By iiks Tn,ijki> Which have been corrected for in-
duced fields in the cluster, are calculated (equatmn (4)) by fitting induced dipoles
using the average local field, £, rather than the applied field.

Having obtained such bare polarizabilities for the necessary bond types, they may
be used to cakulate the response of a macroscopic surface or bulk solid. In doing so
we must again take account of the dipolar interactions. In a model of a macroscopic
solid surface or bulk, a bare bond polarizability matrix (appendix B) is placed in
the centre of each bond, the ‘active site’ of the 1sM model. The local field resulting
from the linear response at each of N bond sites is obtained by solving 3N linear
equations which incorporate dipolar interactions between bond sites and give the
induced dipole of the nth bond, p,, in an applied field, E, which may be constant
or varying in space (equation 5)

aN
Y 1 3(npg, Pm)— Pm,j
pn,s' - an,l'j (EJ + E 47!'60 r3 (5)

mn

where oy, ;. is the bare polarizability matrix of the nth bond, n,,, is a unit vector
from the mth bond directed towards the nth bond, r, , is the distance between the
mth and nth bonds and p,, is the dipole at the mth bond. These equations can be
solved either for a large but finite cluster, or with periodic boundary conditions. Bare
polarizabilities for the Si-Si bond, coupled via dipolar interactions as in (3) in the
presence of a static, sinusoidal applied ficld with wave vector g, are currently being
used to obtain the static dielectric constant of bulk silicon [31),

lim 1 _
q—0¢1(q'q;0)

in order to test the reliability of this approach to dielectric response in semiconductors.
In this way the computation of the linear response is reduced to appropriate cluster
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calculations followed by solution of a set of linear equations: if bond parameters
prove to be reproducible from one solid to another for a particular bond type, then
only the linear equations remain to be solved.

To obtain the non-linear response, hyperpolarizability matrices are placed at the
bond sites and the local field from the linear response calculation is used to obtain the
non-linear response, This assumes that the non-linear polarization from bare hyper-
polarizability sources is small encugh to be considered as a perturbation: otherwise a
new set of equations incorporating hyperpolarizabilities might be solved by iteration.
Single-cluster calculations for the systems studied here require about 15 minutes of
computer workstation CPU time and a similar amount of time is required to solve the
linear equations.

In the present paper, non-linear susceptibilities are obtained for macroscopic sur-
face bilayers of the two surfaces studied by summing dressed hyperpolarizabilities in
the surface unit cell. The local field is not taken into account in these susceptibili-
ties. In a later paper the local field will be considered in the macroscopic non-linear
response in the manner described above. Linear and non-linear bare bond matrices
for these surfaces are reported here and used to analyse major sources of non-linear
polarization in the surfaces.

4. Method of calculation

Calculations for the hydrogen molecule are first briefly described, which illustrate the
method. Description of the method is then extended to clusters and calculation of
local fieids.

A hydrogen molecule is placed so that its bond axis is collinear with two remote
charges of opposite sign so that it experiences a constant static field. The nuclei are
held fixed at the equilibrium internuclear separation and the electronic wave function
is computed in the presence of the field. This is repeated for several field strengths
and the molecular dipole is also computed so that the polarization of the molecule is
obtained as a function of field strength. The molecular polarization is then fitted to a
- polynomial in field strength whose coefficients are oc;, B x» Yijke» - - - (€quation (4)).
Note that the hydrogen molecule is centrosymmetric and 8 = 0. These polarizabil-
ities and hyperpolarizabilities are given in table 1 for several basis sets. The other
elements of the polarization matrices are calculated by placing the remote charges
perpendicular to the bond axis. A trivial but instructive result for the first hyperpo-
Iarizability of a model system can be obtained by transferring a tenth of the hydrogen
nuclear charge from one nucleus to the other, producing a ‘hydrogen’ molecule which
i still neutral but now has one slightly more electronegative atom and one slightly
less electronegative than a ‘real’ hydrogen atom. The first hyperpolarizability for
this modified molecule parailel to the bond axis is non-zero since it is no longer
centrosymmetric. The hyperpolarizability tensor for this molecule is given in table 2
for a single basis set. The first hyperpolarizability tensor for this system has only
two unique, non-zero elements (appendix B). It will be shown that the second-order
polarization of an independent, asymmetric bond in a cluster can also be described
by a smail number of elements whose physical interpretation is clear.

The local field acting on each bond orbital with an external field applied is
calculated after the self-consistent calculation is completed. This is done by removing
the bond orbitals of the bond in question from the converged total wave functions,
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Table L. Hartree-Fock static polarizabilities (er) and second hyperpolarizabilities () for
the hydrogen molecule®.

Basis sat ® o (1030 m'} oyy (1030 m3) MR {1051 m V_l) Froll (1051 @5 V"'!)

% 10.48

2s1p 10.24

4s2p 1150

4s2p2d 8.44 3.86
Extended ¢ 11.90 853 484 4.00
Experiment  11.90° 8.53¢ 5 =4.57¢

® The z and x axes arc parallel and perpendicular to the molecular axes, respectively.
Some non-zero elements in the ~y-tensor have not been calculated.

b Full basis set details are given in appendix B.

¢ The theoretical values were shown to have converged for these extended basis sets
{7

¢y = (8yiaaL + 1290y + 3 ) /15 (48]

Table 2. Hartree-Fock first byperpolarizabilities (), in units of 104! m* V~?! for a
modified hydrogen molecule* using the 4s2p basis set.

O R T I (1 I | I | I N §

L 00 00 00 00 -04 0O
L' 00 00 00 —04 00 00
| -04 -04 -16 00 00 00

* The molecule was modified by transferring 0.1 proton charge from one nucleus to the
other along the positive || axis. L and L' refer to two orthogonal axes perpendicular to
the bond axis.

with and without an applied field, then calculating the electric fields along the bond
axes: the difference between these two fields is the induced field. As defined above,
the local field acting at a point on the bond axis is the applied field plus the induced
field. The average local field is taken as the mean of the induced field at ten points
along the bond axis, weighted by the bond orbital charge density at those points. This
field, £, is then used to extract the bare bond matrices {equation (4)). Sometimes
the averaged induced field strength is of similar magnitude to the applied field, even
in directions perpendicular to the applied field, which emphasizes the importance of
induced fields in describing how the bond charges interact when they are polarized.

5. Resuilts

Two coordinate systems are used in the next section, surface and bond coordinates,
illustrated in figure 2. Surface coordinates are appropriate for surface susceptibilities
while bond coordinates are used for bond polarizabilities.

Seif-consistent GVB wave fonctions were computed for clusters representing the
Si(111) 1 x 1 As- and Ga-terminated surfaces, as illustrated in figures 3 and 4 by the
cluster structures and valence bond orbitals for the Si~As and Si~Ga bond pairs and
the As lone pair. These wave functions were successively computed for applied fields
in the z, ¥, z, (x and y), (x and z), and (y and z) directions in surface coordinates;
details of computations are given in appendix C. In order to have a non-linear



SHG at Si(111} surfaces 4025

U
(a) vy

A .
(b) *Q

Figure 2. Didgram showing (a) surface coordinates
for a whole cluster and (¢) bond coordinates for a
single Si-As or Si-Ga bond.

polarization large enough to be distinguished from numerical errors in computed
polarizations, field strengths ~ 10° V m=' were used, which are approximately ten
times greater than typical experimental values [11]. Tests showed that the non-linear
coefficients obtained were the same when a field strength ten times greater was
employed. Dressed polarizability matrices obtained from this curve fitting are given
in table 3. Note in particular that the bond matrices are not symmetric, so the
bond response does not satisfy Onsager’s principle [32], which requires that the bond
polarizability matrices be symmetric:

=ay e (6)

This principle is, of course, satisfied by the whole cluster but not, at this stage,
individually by its component parts, the valence bond orbitals, since they interact
strongly as they polarize in an applied field. The consequence of this for dressed
bond parameters is that they are dependent on the environment and cannot be
transferred from one solid to another or from cluster to solid. For the analysis that
follows it is postulated that bond pairs, in their responses to applied fields, interact
predominantly through the (classical) induced fieids that they exert on one another,
as they polarize in an applied field. This is reasonable for bond pairs, which must be
in separate regions of space because of Pauli exclusion.

a"uij

Table 3. Dressed polarizabilities for (4) Si-As and (b) Si—Ga bonds in bond ooordinates,
and {¢) the As lone pair in surface coordinates, in units of 10~3° m?,

@ + Y | ® L v | © =z 3y =z
L 64 00 14 1 58 00 -134 «x 185 0.0 0.0
L' 00 89 00 L 00 169 00 g 00 181 0.0
I 84 00 361 ff 83 00 392 2 0.0 a0 150

The induced field and bond charge density along the Si-As bond in the Si;AsHZ
cluster (where H* is a modified hydrogen atom; see appendix C) are shown in figure 5,
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Figure 3. A schematic diagram (@) of the Si3 AsHF cluster and contour plots of (b) the
As lone pair GVB orbitals and (c) the Si-As bond GVB orbitals. Contour intervals are
002 au. Crosses indicate atomic positions in the plane while triangles and X symbols
indicate atomic positions in front of and behind the plane, respectively.

for a field applied in the z direction. Note that the induced field and the applied
field are roughly equal in magnitude in the region where bond charge is concentrated,
and the induced field reinforces the applied field resulting in an average local field
~ 2.2 times the applied ficld strength. The largest induced fields are in the zy
plane which is reasonable, as 9 out of 13 valence electron pairs lie approximately
in this plane. Bare polarizability matrices, obtained using average local fields, £, in
(4), are given for the same ¢lectron pairs in table 4. The matrices are now nearly
symmetric, with the remaining inequality in off-diagonal elements probably a result
of averaging the local field over the bond. Clearly the bare matrices are much closer
to satisfying Onsager’s principle, with the corollary of improved transferability, than
are the dressed matrices.

Calculation of the hyperpolarizability matrices is done in a similar way. Dressed
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Ga H:

(a) Si

Figure 4 A schematic diagram (a) of the SiyGaHj duster and contour plois of (b) the
Si-Ga bond GvB orbitals. Contowr intervals are Q.02 au.

Table 4. Bare polarizabilities for (g) S5i-As and (}) Si-Ga bonds in bond coordinates,
and (¢ the As lone pair in surface coordinates, in units of 103" m?®.

@ L1 L @ L L © = ¥ z

L &1 00 07 L 15 00 50 =z 144 00 00
00 71 00 L 00 114 00 g 00 136 00
I -04 o0 150 | 24 00 168  z 00 00 120

hyperpolarizabilities are obtained by equating the quadratic polarization of bond
orbitals to the hyperpolarizability for particular field directions. When -average local
fields are used to extract bare bond hyperpolarizabilities in (4), a system of linear
equations must be solved that depends parametrically and quadratically on average
local fields. A symmetry present in static susceptibilities is therefore used to simplify
the extraction of bare hyperpolarizabilities. For an electronic system in the lossless
regime, all xfﬂ tensor elements that are related by a rearrangement of the order of
the subscripts are equal in magnitude and sign:

2 2 2
ng}: = XEk)j = XS:;'):' ete. | ™

This is Kleinman’s conjecture [33] and tensor elements related in this way obey Klein-
man ‘symmetry’. A reduced set of linear equations is then solved in which elements
related by interchanging the last two indices are equated. This is expected to improve
the accuracy of bare hyperpolarizabilities which can only be obtained when fields have
been applied in two orthogonal directions. Note that some hyperpolarizabilities, which
should be zero by symmetry, are small but non-zero (=~ (0.1-0.2) x 10~%° m* V-1)
through the limitations of numericai accuracy of the method. These have been en-
tered as zeros in the tables so as not to detract from the information being conveyed.
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Be+d -
Average local field
g Ge+9 |
>
o 4949
qj F - ]
L 2040 Applied field \
L g
..3 Ce+D .
2 ..o /induced field
w
-4e+§
.?." 0.04p
5 a
& § ooaf
!
o 20
D E"
© 2
L ®om|
Q
0.00 . . .

oD o2 0.4 -

0.6

a8

Bond Coordinate

Figure 5. {(a) Applied field, induced field and av-
erage local field resolved in the x direction in a
iz AsHF cluster when a field is applied in the =
direction. (#) Charge density of the Si-As bond
pair along the Si-As bond axis. Bond coordinates
0.0 and 1.0 correspond 1o the As and Si nuclei,
respectively.

Dressed Si-As and Si-Ga bond matrices and the As lone pair tensor are given in
table 5. When the matrices are extracted from the same bond polarization data using
the average Jocal field and imposing Kleinman symmetry, the bare hyperpolarizability
matrices shown in table 6 are obtained.

Table 5. Dressed hyperpolarizabilities for (#) Si-As and (b) Si-Ga bond pairs in bond
coordinates, and (c) the As lone pair in surface coordinates, in units of 10—4° m* V-1,

@ 1L 1o Ul i Ll

L -0% 13 14 00 06 00 e
L' 00 00 00 -0.1 00 -0.1

I -50 -10 128 00 -19 00

@ Ll LLopg o) 4 Lt

L -38 38 -17 00 -91 00 - - -
L 00 00 00 =07 00 03

I 41 -07 0.6 00 96 00

) =zz yy zz zy xx  xy

r L1 1.7 0.0 00 -38 00

v 0.0 00 00 -38 00 1.1

z =53 -70 -28 00 e 0.0

Bond polarizabilities are not used to calculate a surface dielectric susceptibility,
since to0 how many Jayers deep such a susceptibility would extend is not well defined.
However, it is more reasonable to assume that the second-order polarization is much
more localized at the surface. Surface second-order susceptibilities, x{?}, are calcu-
lated by summing over the bond pair and lone pair dressed hyperpolarizabilities for
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Tuble 6 Bare hyperpolarizabilities for {a) Si~As and (p) Si-Ga boads in bond coordinates,
and {¢) the As lone pair in surface coordinates, in vnits of 10—%° mt V-1,

@ 1L 00 Lo Ll

L 06 10 02 00 -06 0O
L' 00 00 00 -07 00 10
I -06 —07 13 00 02 00

® LI L0 L oL L

L 02 87 -07 00 -15 00
L 00 00 00 -14 00 87
| ~1S —14 11 00 -7 00

) =z=x ¥y zz zy zz  xy

z 07 09 00 00 -34 00
y 06 00 00 -39 00 o9
z =34 =39 =27 00 00 00

both surfaces. Surface x(?) matrices, the sum of bond hyperpolarizability per unit
surface area, are given in table 7 in m? V-1,

Table 7. Surface x(?) matrices for () SigAs and (b) SizGa bilayers, in units of
10-21 p? V-1,

) =z yy zzx =zy zx zy () =zx yy =zz zy zr  xY

z 37 -37 00 00 -23 00 27 =26 00 00 86 00
¥ 60 00 00 -26 00 -37 00 00 00 110 006 -11
z =56 =51 L7 00 00 00 ~23 25 34 00 00 QO

6. Discussion

The sources of linear and non-linear polarization at surfaces can be analysed more
easily in a bond framework than the conventional band framework. The bare matri-
ces are the appropriate quantities in discussing the bond response and the dressed
quantities are the relevant ones for the response of the whole system.

Table 1 shows static polarizabilities and hyperpolarizabilities for the hydrogen
molecule for several basis sets at the Hartree-Fock level. Theoretical studies of
these quantities for the hydrogen molecule, which incorporate electron correlation,
have shown that this is much Jess important than an adequate basis set in obtaining
accurate calculated values [34]. This is borne out by table 1 since good agreement
with both experiment, and extended basis set calculations that incorporate electron
correlation; is obtained using a double-¢ valence plus double-¢ polarization basis set.
Molecular hydrogen is the only molecule that contains an ‘isolated’ chemical bond:
all other molecules contain more than one electron pair which mutually polarize each
other via fields induced in the presence of an applied field. This is contained in the
dressed polarizabilities of table 3, but the bare polarizabilities of table 4 represent
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the polarizability of a bond in the absence of mutual polarization. For the Si-As
bond, the bare o} ;, o)., and oj, components are 6.1, 7.1 and 15.0 x 1073 m?,

respectively, compared with 84, 84 and 11.9 x 10~ m® for H-H. The diagonal
elements of polarizability of the Si-Ga bond are similar in magnitude to those of
the Si-As bond, except for somewhat larger o/, | and ¢/,,,, components. The bare
polarizabilities for the surface bond pairs are similar in magnitude to those of the
hydrogen molecule, and these are enhanced by the local field in the surface or
cluster to give larger dressed polarizabilities. The off-diagonal elements of the bare
polarizability matrix ought to be zero if the bond charge density has a ‘cigar shape’
and the major polarizability matrix axis lies along the cigar axis. From table 4(a) it
can be seen that this is so for the Si~As bond. Inspection of the Si-As bond orbital
amplitudes in figure 3 shows that the bond charge density has approximately this
cylindrical symmetry. In contrast, the Si-Ga bond polarizability matrix (table 4(b))
has non-zero off-diagonal elements when the bond coordinate system of axes is used.
The off-diagonal elements are much reduced, however, when the axes are rotated to
surface coordinates. This is reflected in the orbital character of the Si—-Ga bond in
the GvB wave function and is a result of strain in this surface structure. The bond
lobe localized on the Si aiom is comparable to the equivalent lobe in a Si-Si bond
or the Si-As bond, but the lobe localized on the Ga atom is unusual. It extends
from the Ga atom nearly parallel to the surface. This bond is bent because the
Ga atom cannot form three ideal ‘sp®-hybridized’ bonds to silicon—the positions of
Si atoms in the Si(111) surface constrain the geometry that the Si-Ga bonds can
attain, resulting in Si~Ga bonds significantly shorter than the sum of the Si and Ga
covalent radii but with their charge density bent cutwards from the surface. The bare
bond polarizability matrix consequently has non-zero off-diagonal elements in bond
coordinates. The bent charge density profile of the Si-Ga bond also has consequences
in the bond hyperpolarizability tensor.

In table 2 first hyperpolarizabilities for a modified, acentric H, molecule were pre-
sented. The cylindrical symmetry of the molecule requires that 8y, , = Gy,.,.. From
Kleinman symmetry, 8, , = By and 8y,.,, = B, 2nd 50 alf these elements
are equal. 8, is the other unique element: it corresponds to the hyperpolarizability
parallel to the bond axis, with a ficld applied parallel to that axis. It has the same
sign as the other elements and is four times larger. So, for the simplest, hypothetical
acentric chemical bond a combination of symmetry requirements and Kleinman sym-
metry lead to only swo unique elements in the bond first hyperpolarizability tensor,
with the tensor being dominated by the 8, element.

Turning to the more complex systems, dressed hyperpolarizabilities, in bond co-
ordinates, for the Si-As and Si~Ga bonds were given in table 5, along with dressed
hyperpolarizabilities for the As lone pair in surface coordinates. 8y, is the domi-
nant element for the Si-As bond, as is the case in the modified H-H molecule. The
dressed Si-As hyperpolarizability matrix has the correct symmetry for a bond with a
single mirror plane (appendix B). Likewise, the Si-Ga bond and As lone pair matrices
satisfy the symmetry requirements for a bond with a single mirror plane, and a pair
with 3m point group symmetry, respectively. However, deviations in magnitude occur
for elements of the lone pair matrix which ought to be equal. The dressed lone pair
and bond pair matrices do not conform perfectly to Kleinman symmetry. Imperfect
conformation of dressed hyperpolarizability matrices to Kleinman symmetry is a result
of separating the whole cluster into pieces and is not because of limited accuracy of
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the method; the whole cluster conforms very well to Kleinman symmetry in a static
field.

More may be learnt about the non-linear properties of the bond from the bare hy-
perpolarizabilities than the dressed versions, as was the case for polarizabilities, but it
should be recalled that the bare hyperpolarizabilities are extracted with the constraint
that they obey Kleinman symmetry. From table 6(0) it can be seen that the element
By is still the largest for the Si-As bond, but it is not dominant. (Recall that in sec-
tion 2, bare and dressed quantities were distinguished by adding a prime in the latter
case.) In addition to elements that produce a non-linear polarization parallel to the
bond axis, there are also elements that produce a non-linear polarization along the L’
axis, perpendicular to the bond. For a bond of perfect cylindrical symmetry, all ele-
ments, except 37 , and 8},, ., responsible for non-linear polarization perpendicular
to the bond are zero, but the charge density in the Si-As bond is slightly bent inwards
[20], so there is a non-zero G’ ;... element: a field parallel to the solid surface but
perpendicular to the bond (along L) will produce a non-linear polarization in the 1
direction, outwards from the surface but perpendicular to the bond. Elements of the
dressed hyperpolarizability matrices are quite different in magnitude and, sometimes,
in sign, but the bare matrix elements of the Si-As and Si—-Ga bonds are similar! The
ﬁ" T elements are comparable for both Si-As and Si—-Ga bonds in magnitude and
sign. The &), and 5, ,,, elements for either bond are approximately equal (as
they ought to be for a cylindrical acentric bond (appendix B)) but differ in magnitude
between bonds by a factor of 2, the Si-Ga bond giving the larger response. The
B 1., element has a value of 1.0 x 1074 m* V-! for the Si-As bond. The same
element has a much larger value of 8.7 x 10~*° m* V-! for the Si-Ga bond, and is
the dominant element in the bare matrix. This is another consequence of the highly
non-cylindrical charge distribution of the Si~Ga bond, mentioned earlier in this sec-
tion. Recall that this element is zero by symmetry for a perfectly cylindrical bond.
This element is also relatively large in the dressed matrices, so the large values in the
bare matrices are not an artifact of the way in which these matrices are extracted. It
is clear that, for bonds in lowered symmetry situations such as surfaces, a bond hy-
perpolarizability can depend strongly on its environment {35]. Matrix elements which
become non-zero through symmetry lowering can actually dominate the non-linear
response, in contrast to the response of the acentric bond with perfect cylindrical
symmetry (modified H, molecule) for which the 5y, element is the largest.

The bare hyperpolarizability matrix for the Ione pair has 3m pomt group sym-
metry. Its largest elements (in surface ooordmates) are f3;,, and 8, ,: when a field
is apphed perpendicuiar to the lone pair symmetry axis, the lone pau‘ z expectation
value is reduced as it polarizes along » or y directions. There is no linear o, or

y lone pair polarizability by symmetry, so all such poIarization is non-linear The
2, component is the other major component of lone pair hyperpolarizability.

The non-linear polarization can cancel or reinforce between different pairs and
it is the sum of all pairs that gives the overall non-linear response. The surface
x® matrices, which are obtained when bond pair and lone pair hyperpolarizabili-
ties are summed in surface coordinates, are now described. The surface non-linear
susceptibility is the hyperpolarizability per unit surface area, and it is this quantity
that may be compared to SHG experiment. For a homogeneous surface one would
expect the greatest component in x(® to be x%:, because it is along the z direc-
tion, perpendicular to the surface, that inversion symmetry is broken. This has been
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assumed in recent models of SHG at surfaces of nearly-free-electron metals [36] and
semiconductors {14]. In ‘structured’ sutfaces, such as semiconductor surfaces with
valence charge localized in directional bonds, this is not the case as demonstrated by
the results given above. For the Si(111) 1 x 1 As surface, cluster models predict that

the largest elements are x\2. and x(;‘;,),,. They have major contributions from the
ﬁ“ I and 8, ;.,. elements of the dressed bonds. The xﬁs_ and x;‘;’y clements have

their major contribution from the 3y, element of the dressed bonds. The x;’i’, ele-
ment is small because of near mnoe“ation of the lone pair and bond pair non-linear
responses. The Si(111) 1 x 1 As surface x(?) matrix obeys 3m point group symmetry
well, but elements which ought to be identical by Kleinman symmetry, differ by a
factor of 2. This arises because the twelve Si-H” cluster-terminating bond pairs have
been separated from the Si-As bond pairs and the As lone pair.

For the Si(111) 1 x 1 Ga surface there is a similar pattern to that for the As-

terminated surface. The xg“;)x, x%)y, xﬁ),—, and xg?,, clements are all smaller than

in the As-terminated surface but the x(f,.,), clement is larger by a factor of two. This
is reasonable because the cancellation between the lone pair and bond pairs in the
As-terminated surface is absent in the Ga-terminated surface. A disturbing feature
of this x(® is gross violation of Kleinman symmetry: x%2; and x$J, and x{%,
and ng}, differ in magnitude by factors of ~ 4 and are opposite in sign whereas
they should be identical in order for Kleinman symmetry to hold. Again, this arises
because the twelve Si-H* cluster-terminating bond pairs have been separated from
the central electron pairs.

The theoretical values presented in table 7 may be compared to experimental
values for Si surfaces, either clean or with adsorbed As. Absolute measurements [15]
of the SHG intensity have found responses in the range (2-7)x10~*' m? V-! in good
agreement with the values reported in table 7.

7. Summary and conclusions

Polarizabilities and hyperpolarizabilities of bonds in two semiconductor surfaces have
been extracted from induced dipoles of localized GVB bond orbitals in static applied
fields. If the field acting on each bond pair is assumed to be the applied field,
dressed matrices are extracted that violate Onsager’s principle, and do not reflect the
symmetry of the GVB orbitals. On the other hand, if the fields that are generated
by each polarized bond are combined along with the applied field to produce an
average local field, the polarizability matrices satisfy Onsager’s principle much better
and the hyperpolarizability matrices have the symmetry of the GVB orbitals. ‘Bare’
hyperpolarizability matrices extracted in this way are analysed as sources of non-linear
polarization in each of the surfaces studied. In general, the ﬁl’l T matrix element of
an acentric, cylindrical bond pair is dominant, but in situations where the cylindrical
symmetry of a bond pair is broken (the bond is ‘bent’), such as in surface structures,
other matrix elements that are otherwise zero by symmetry may become large and
may dominate the hyperpolarizability matrix. Surface non-linear susceptibilities may
be generated from dressed bond hyperpolarizabilities by summing over the bond
pairs in a representative cluster. Unlike in the case of an electronically homogeneous
(metallic) surface, the largest surface x(?) element of a semiconductor surface is

not necessarily x(f,,),,. For the Si(111) 1 x 1 As surface the order of inequivalent
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elements is x(,";), > x(f},, > xff,),, while for the Si(111) 1 x 1 Ga surface the order
of inequivalent elements is xg'“?, > xﬁz > XS*;L {neglecting anomalous x‘ﬂ,, and
xg?m elements).

Cluster methods for obtaining noa-linear susceptibilities of solids are an attractive
alternative to band-structure methods. They are computationally efficient, and in the
case of systems. with very large unit cells they may present the only practicable means
of calculating the non-linear electric susceptibility.
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Appendix A. Definitions of units and local fields

SI units have been used throughout. Bulk polarization is in C m~2. For a bond
it is not possible to give a polarization per unit volume since the ‘volume’ of the
bond is not well defined. Hence bond-induced dipoles are in units of C m and
the bond polarizability and first hyperpolarizability are in units of m® and m* V-1,
respectively. The bulk second-order susceptibility in these units is m V™! while the
surface second-order susceptibility is in m® V-1,

The local field that we use to extract bare parameters for bonds is the same as
the local field acting on an ion in Ashcroft and Mermin's ‘theory of the local field’
[37]. This is, ‘the microscopic ficld at the position of the ion [bond], diminished by
the contribution to the microscopic field from the ion [bond] itself’. The microscopic
electric field, e(z,1), in a solid is the field, rapidly varying in time and space, pro-
duced by the instantaneous positions of the electrons and nuclei. The macroscopic
electric field, E(z,t), appearing in the macroscopic Maxwell’s equations is the spa-
tially averaged microscopic field [38]. This local field differs from another ‘local field
effect’ frequently encountered in discussions of the dielectric response of semicon-
ductors and insulators [39]. There, the contributions of off-diagonal elements in the
inverse dielectric function, which relates the potential secen by a test charge to an
applied potential (equation (Al)),

V;est (qfvw) = 6_1 (q,$ Q;w) V;.pp (st) (Al)

are attributed to Jocal field effects’.

Appendix B. Symmetries in bond parameter matrices and surface susceptibilities

The linear induced dipole, p{1), of a cluster may be expressed as a sum aver boads
via

P =YpM =Y a,E ®B1)
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where pS.” is the linear induced dipole of the nth bond, «,, is the dressed polariz-
ability matrix of the nth bond and E is the applied field. The «, matrices differ
by bond type and by bond orientation; only when bond type and bond orientation
coincide will the polarizability matrix be the same. The induced dipole of each bond
is

Ps:,)i = oy i B (B2)

For an isolated body, Onsager’s principle [31] requires that the matrix with element
; be symmetric (equauon (6)). The shapes of GVB bond pairs {combined pairs of
GVB bond orbitals) shown in figures 3 and 4 are ellipsoidal, the principal axes lying
along, and perpendicular to, the bond axis. Because of the almost symmetrical charge
distribution of a bond pair about these axes, the axes of the representation quadric
of the bare bond matrix [40] are expected to coincide with the bond axes.
The quadratic induced dipole of a cluster, p{?), may also be expressed as a sum
over bonds:

pP=Y P =3 6,F ®3)

where p. ) is the quadratic, dressed polarization of the nth bond, 8, is a third-rank
tensor for the nth bond and E is the applied field. The quadratic induced dipole of
each bond is given by

Pf), = Br.ijk E; By (B4)

Since no physical significance can be attached to an exchange of E; and Ey, G;;; =
ﬁ,h, the tensor can be reduced to a 3 x 6 matrix, d;;, so the vector components of

p% are given [41] by

P, dy1dy2d3d,4d,5d56 Eg
Py | = | daydandyadysdagdag 2E E *

P, d31 dgodayds, d35 dag

i

where the subscripts j& have been replaced by a single symbol: L1 or zz = 1;
lVoryy=2|[lorzz=3; Ul|s|| L' =4d4oryz=zy=4; L'|=]||L' =5
orzz=z2x=95; 'L = 11l'=6or 2y = yz = 6. The non-linear susceptibility
matrices given in tables 2, and 5 to 7 are d;; matrices of this form. Apart from
Kleinman symmetry, there are symmetries imposed on the d;; matrix by the point
group of the cluster or solid surface. Matrix symmetries for the non-linear response
of clusters with 3m point group symmetry and individual bond pairs with m point
group symmetry are given below in a standard notation o be described. Large dots
indicate non-zero elements, small dots are elements which are zero by symmetry.
Dots that are joined by continuous lines are elements which are equal in magnitude;
two dots joined in this way that are filled and unfilled are elements opposite in sign;
if they are both filled or unfilled they have the same sign.
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The clusters studied (and surfaces that they represent) have 3m point group
symmetry. The d;; matrix for the response of the entire cluster or the surface ought
to have the symmetries:

—. .. (B6)

Each of the clusters possesses 3m symmetry, as do their tofal wave functions (products
of spatial orbitals and spin functions}, but each of the bond pairs is required to possess
only a single mirror plane (m symmetry). In this case the symmetries of the d;; matrix
are

cee .. B7)

ie. no non-zero elements are necessarily equal. Provided that the d;; matrix is in bond
coordinates, if the bond is not bent, it will possess two mirror planes, perpendicular
to one another, that lie along the bond axis, and the d,; matrix will have 4mm point
group symmetry. In this case a bond hyperpolarizability can be described by three
unique elements only (compare the asymmetric hydrogen molecule in table 2):

e e

VA @)

Appendix C. Details of computations and basis sets

All 6vB computations [30] were performed using the GAMESS program [42]. The
core states of the heavy atoms were replaced by effective-core potentials (ECP) which
closely reproduce the all-electron (AE) ground state properties of similar systems to
these clusters [10]. This was checked for the systems studied here by computing AE
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and ECP bond polarizabilities of the Si-Si bond. The polarizabilities and induced fields
found in AE and ECP calculations, with similar valence double-¢-plus-polarization basis
sets appropriate for each core type, were compared for the Si-Si bond in a Si,Hf
cluster. Bare polarizabilities of AE and ECP calculations differed by 6%; induced
fields in the region where bond charge density was concentrated were similar. The
ECP basis sets for Si [43], As [44] and Ga {44] were the 2s2p bases developed for
their respective ECPs [43, 44] supplemented by a single-{ d polarization function on
each heavy atom ({5 = 0.032, {,, = 0.035, (g, = 0.035). The AE basis set
for Si was the 11s7p basis of Huzinaga [45] contracted to 6s4p [46]. The modified
hydrogen basis, H*, used to terminate the clusters was the single-¢ basis of Schultz
and Messmer [27].
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