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J. Phys: Condens. Matter 4 (1992) 40174037. Printed in the UK 

Bond calculation of optical second-harmonic generation at 
gallium- and arsenic-terminated Si(ll1)l surfaces 

C H Patterson, D Weaire and J F McGilp 
Department of Pure and Applied Physis, University of Dublin, "inity Collepe, Dublin 
2, Ireland 

RseiMd 17 December 1991 

AbsImcL An ob valence bond method based on finite-sized dusters is proposed for 
calculating lhe non-linear elemic susceptibilities of mvalent solids, particularly those that 
are diredly related to their effciency for semnd-harmonic generation. It is presented as 
a radical alternative to electronic band-stmcture methads for these dielecuie response 
functions and it ir applied here to two Si surfaces. In its present form it is limited lo 
the response 10 static fields. Linear and non-linear pans of the eledric susceptibility are 
obtained from generalized valence bond dculations on clusters representing gallium- and 
arsenic-terminated (I x 1) Si(ll1) surfaces ln the valence bond model for t h e e  mvalent 
systems the selfconsistent orbilals are localiied m bond pairs and lone pairs. Electric 
susceptibilities are mnstmcted by summing bond polarizabilities or hyperpolarkabilities 
oi electron pairs in he  surface layer. The major sources of non-hear polarization in 
the duster lie along bond axes; hence optical semnd-harmonic generalion at a m l e n t l y  
bonded surfam may depend strongly on lhe surface sm~ture .  An additional major source 
of non-linear polarization exists perpendicular to the axes of k n t  bonds which becomes 
dominant when the bond is severely bent. Calculated non-linear susceptibilities are in 
good agreement m.th aboluce measuremens of second-harmonic generation inlensiry. 

1. Introduction 

In the early 1970s. Levine [l] developed a phenomenological bond charge model 
for calculating non-linear susceptibilities of covalent and polar-covalent solids. This 
involved analytic expressions for bond non-linearity in terms of differences in covalent 
radii and ionicity of the bonded pair of atoms, and the average band gap of the 
material. Levine's method proved very successful in quantitatively predicting non- 
linear susceptibilities and in explaining nends in susceptibility as a function of ionicity 
etc. Around the same time, Jha and Bloembergen [2] and Flytzanis and Ducuing [3] 
calculated the low-frequency Limits of non-linear susceptibilities of 111-V compounds 
using tetrahedral bond orbital models. There were also early calculations, based on 
electronic band-structure techniques, by Aspnes [4] and Eang and Shen [5], and these 
techniques are still being used. However, when band-structure techniques are applied 
to materials with primitive unit cells much larger than that of diamond, there are 
difficulties in identifying the sources of non-hear polarization in the solid: there are 
also enormous demands on computer time. The calculation, when formulated in terms 
of perturbation theory and band-structure, expands rapidly with the size of the system 
and is not practicable for many systems for which a theoretical calculation of the 
non-linear susceptibility is highly desirable. This is illustrated by a recent pioneering 
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calculation of second-harmonic generation in odd-period Si,-, superlattices and 
at the Si& interface [6]. For the superlattice material, Si,&,, the calculation 
required 90 hours of supercomputer time [q. A method is therefore sought that b 
fundamental. computationally inexpensive and will readily yield a simple model for 
sources of non-linear polarization in the solid. The work dted may provide a clue to 
development of such a model, in as much as the results were Seen to be mnsistent 
with additive bond contributions 161. A return to the bond model is thereby suggested. 

In the method to be presented below, non-linear susceptibility matrices derived 
fmm bond hyperpolarizabilities are calculated, without adjustment of parameters, for 
gallium- and arsenicterminated (1 x 1) Si(ll1) surfaces. These matrices describe 
the response of the surface charge density to electric fields, and their calculation is 
central to understanding the optical response. at surfam and interfaces. b e a r  and 
non-linear polarizabilities are obtained by applying electric fields to clusters (figure 1) 
which represent the surfaces, and calculating the polarization of localized bond or- 
bitals as a function of applied field saength. The calculation is formulated in terms 
of responses of electron pairs @ond pairs and lone pairs) which are summed over 
the unit cell to give the total response. 

C H Pattmsm et a1 

, , ~ , 1  I , , ,  i , , , ,  

F4.ui-e L Schematic repmenialion of a duster 
calculation. lbp: duster of atoms used to calculate 
rerponse propenies of the bond between the Iwo 
atoms in region A The next shell of afoms, B, 
provides an electronic environment for lhe bond in 
A which reprerenu lhe remainder of the surface or 
bulk of the d i d  being modelled. The 6nal shell, 
C, b an artificial termination by paeudo-hydrogm 
atoms. Middle: the valence bond mcdel ~ t ~ ~ a l l y  
yields mupied band ohitals localized on all bonds. 
Boltom: the change in the elecoic Geld at the bond 
in region A 6” dipoles induced in sumunding 
bonds, together with the atemally applied Geld, 
mnslitute the local field at the bond in region A. 
lhis rield b “puled, & milio, at poinls along the 
A bond axis. This allows the response of the bond 
in region 4 calculated bj applying a field to the 
cluster, to k “ U e d  for effects of interaction 
with ofher bands. 

Long-range (dipolar) interactions between polarized bonds cannot be neglected 
in summing responses of bonds to an applied field. Thus there is no simple additivity 
of bond polarizability and hyperpolarizability that would yield the overall linear and 
non-linear responses of the solid. A particular bond is polarized by the applied field 
together with the field arising from dipoles induced within the solid or at the surface. 
The combination of these fields is the local field which is discussed in more detail 
below. A static field is applied in a self-consistent-field (sa) cluster calculation which 
polarizes bonds in the cluster (figure 1). Induced dipolar fields are present in the SCF 
charge density. However, these fields are specific to the particular cluster and differ 



SHG at Si(ll1) sutfaces 4019 

from the fields in a macroscopic surface. It is therefore necessary to obtain bond 
parameters for bonds that are independent of the surrounding bonds, in order that 
duster calculations may give results which are transferable to macroscopic surfaces 
or bulk solids. These are obtained by computing the local field acting on a particular 
bond and fitting the bond parameters from the bond response to the local Beld. 
The response of a macroscopic surface or bulk solid to an applied field is obtained 
in a second calculation of the polarization using these independent bonds coupled 
by dipolar fields. Independent bond parameters are termed ‘bare’ while parameters 
fitted using only the applied field are termed ‘dressed’. In certain respects, the 
approach developed here is similar to the interacting segment model (ISM) of Miller, 
Om and W r d  [I. In the ISM, electrostatic interaction between adjacent segments of 
a molecule is taken into account and this was shown m give substantial improvement 
over simple bond additivity as a basis for understanding electric tensor properties of 
chlorotluorocarbon molecules. 

Within the valence bond model of electronic structure for molecules and solids, 
bond types may be classed according to the number of spin-paired orbitals localized 
between a pair of bonded nuclei, and their shapes. In solids, bonds are usually single 
bonds, there being only a single pair of spin-paired orbitals localized between the 
nuclei, but in molecular systems, especially carbon molecules, there are commonly 
double and triple bonds with four or six localized orbitals spin-paired into two- or 
three-bent-bond arrangements [SI. If the shapes of these orbitals are compared be- 
tween one molecule and another containing, according to this simple analysis, the 
same type of bond, a remarkable degree of similarity is usually found in the shapes of 
the localized valence bond orbitals [9, 101. However, the possible change in the po- 
larizability and hyperpolarizability for two bond pairs of the same type in similar, but 
not identical, electronic environments is as yet unknown. For example, S i s i  bonds 
occur both in bulk Si and Si-Ge superlattices, but without performing calculations 
on clusters representing both of these, it is impossible to say whether there will be 
a marked difference between the independent bond parameters determined for the 
S i s i  bond in bulk Si compared to the same bond type in the S i G e  superlattice, 
due to different surrounding bonds (SiSi, Si-Ge and Ge-Ge versus only Si-Si). At 
this stage we use the similarity in shapes of orbitals in the strong fields of nuclei 
and neighbouring electron pairs in different molecules as a plausibility argument that 
bond responses in relatively weak externally applied fields should also be similar. A 
calculation of linear and non-linear bond polarizabilities, which contribute indepen- 
dently (apart from the interaction mentioned above) to the optical properties of a 
buk solid or surface, is therefore envisaged. 

While the derived bond parameters can be applied to a number of response 
properties of bulk solids and their surfaces, the empbasis here is on calculating the 
(non-resonant) optical second-harmonic response. Optical second-harmonic gener- 
ation (SHG) is still in its early stages of development as a technique for studying 
surfaces and interfaces [11-14]. Its surface and interface sensitivity arises because the 
bulk second-order response is zero in a centrosymmetric medium within the dipole 
approximation. Fbr a material such as crystalline silicon, the surface can dominate 
the second-harmonic response at certain excitation frequencies [ll]. Generally, sur- 
bce SHG experiments are carried out with incident photon energies in the range 1 
to 3 e y  where the excitation or second-harmonic fields may cause direct transitions 
between surface. and interface states and therefore, resonant behaviour, producing a 
strong variation in optical properties. 
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The specific connection between bond polarizabilities and second-harmonic gen- 
eration b as follows: the second-harmonic intensity depends on the square of the 
second-order polarization in the solid, P,'"). The total polarization, e, per unit MI- 
ume (equation (1)) is usually expressed as a polynomial series in the applied field 
strength, E, where the susceptibility coefficients are independent of field strength but 
will, in general, depend on the frequency of the applied field: 

where c,, is the vacuum permittivity and x("') is the susceptibility at mth order in 
field strength. So the second-harmonic intensity depends on x ~ ~ ~ E j E , .  In sections 
following v,e show how x$L may be obtained as a sum over second-order bond 
polarizabilities. 

2. Strurtures 

Calculations are presented for two Si(ll1) surfaces, terminated in a 1 x 1 surface unit 
cell either by As or Ga. The major motivation for studying the optical properties of 
these surfaces theoretically was that parallel, experimental SHC and surface Raman 
studies have been performed in this laboratory [U] and elsewhere [16] and a tight- 
binding band-structure calculation for the second-harmonic response of As-terminated 
Si(ll1) was also in progress [lv. The As-terminated surface was initially studied by 
Uhrberg ef d 1181, who measured the surface band-structure and calculated the 
surface states. Since then this surface has been extensively studied by theoretical 
117-211 and experimental [18, 22, 231 methods. The structure of the surface is known 
from x-ray standing wave [22] and medium-energy ion scattering experiments 1231: the 
As a t o m  that replace the last layer of Si atoms are relaxed a22 8, outwards from the 
bulk-terminated Si(ll1) positions. Theoretical calculations for the surface structure 
based on periodic boundary conditions [18] and cluster techniques 1201 are in good 
agreement with the experimentally determined structure. The 1 x 1 Ga-terminated 
surface has not been so thoroughly studied. Its surface structure has been studied 
experimentally by LEED 1241, the x-ray standing wave technique (241 and scanning 
tunnelling microscopy [2SJ and the surface structure has been calculated by a density 
functional technique [24]. LEED studies indicate that there may be weakly bound 
Ga present in a Ga monolayer on Si(ll1) [%I, in addition to the Ga bonded in 
the substitutional sites (which are equivalent to those occupied by As) a the '1 x 1' 
surface may relieve strain by incorporating an ordered missing Ga defect structure 
[a]. me surface structure determined by x-ray standing waves has the substitutional 
Ga atoms 0.50 ?C 0.02 8, below the bulk-terminated Si(ll1) positions, and this large 
inwards relaxation of the Ga atom agrees with the S i 4  bond lengh of 223 8, 
[%I calculated by the density functional technique, which b 9% smaller than the 
sum of the covalent radii and corresponds to an inwards relaxation of 0.59 k An 
inward relaxation of 0.16 A (corresponding to a Si-Ga bond length of 230 t%, 6% 
shorter than the sum of covalent radii) was obtained by us in a cluster calculation 
of the minimum energy position for Ga in the 1 x 1 substitutional site, identical in 
methodology to a previous calculation of the equilibrium position of As in the same 
site [20]. Calculations described below were performed with the As or Ga atoms at 
their equilibrium computed bond lengths. 
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3. Application of cluster calculations to wponse pmperties 

In this section the difficulties inherent in using clusters to model optical properties of 
solids are discussed. In particular, attention is given to how the edges of clusters are 
treated, why the localized orbitals of a generalized valence bond (GVB) wave function 
make it especially suitable for cluster modelling of optical properties, and how the 
local field mentioned above is to be calculated. 

Cluster techniques have been successful in predicting surface [20, 261 and bulk 
defect (27-291 structures and they have been used to hterpret chemical bonding in 
these structures [20. 26, n]. Wve functions based on valence bond, Hartree-Fwk 
@IF), density functional techniques etc are computed for a cluster chosen to represent 
a particular system, which must be terminated appropriately [27l. In making the 
assumption that, for example, a macroscopic surface can be adequately represented 
by a small cluster of atoms, the ground state charge density is implicitly assumed to be 
largely determined by the local configuration of atoms. This is expected to be a very 
good approximation for metals since any static, external perturbation is screened by 
the valence electrons over short distances; in a semiconductor the approximation is not 
expected to be as good. However, cluster modelling of covalently bonded materials 
by valence bond methods is simpler than for metals because the valence orbitals of 
the covalent material localize in well-defined bond regions. Covalent clusters can 
therefore be terminated economically in an obvious way, using hydrogen-like atoms. 
Such cluster-terminating atoms are used in this work they preserve charge neutrality 
of silicon atoms to which they are bonded [26, 271. 

The second important consideration is concerned with the functional form of 
cluster wave function (GVB, HF etc). A wave function that facilitates partitioning of 
the charge density into ‘representative’ and ’terminating’ parts is required, the former 
refemng to those parts of the charge density that are to be identified with parts of the 
unit cell being modelled, and the latter to those that belong to the terminating-atom 
bonds. The GVB wave function [30] provides such a separation since the orbitals of 
this wave function are localized. It has the form 

where A is the antisymmetrization operator, +lA and q51B are a pair of overlapping, 
singly occupied orbitals and 0 is the spin function which is a sum of spin eigen- 
functions. In principle, all GVB orbitals may overlap to an extent determined in the 
self-consistency process, and 0 is a complete set of spin eigenfunctions. This wave 
function is computationally complex but considerable simplification can be obtained 
by introducing the strong orthogonality and perfect pairing approximations [30], in 
which electron pairs are constrained to be orthogonal to one another and only the 
perfect pairing spin eigenfunction, Q,,, with the form 

e,, = (ap - pa) (ap - pa) (a@ - pa) .  . . (3) 

is retained. A more extensive description of this wave function, and its relationship to 
others incorporating electron correlation effects and the HF wave function, was given 
recently [lo]. 

The orbitals of a GVB wave function partition the charge density into bonds w i h h  
the representative part of the cluster and those bemeen the representative part and 
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the tei"iMthg atoms. More exactly, it is impossible to separate the cluster response 
in the same way since, for example, the induced dipoles of each part interact strongly, 
as noted in section 1. Indeed it will be shown that the induced fields can be as large 
as the applied field. The local field that acts on the representative part of the cluster 
charge density is therefore unique to the cluster, but the total electric field at any 
point in the cluster can be computed and so can the local field at a bond arising from 
all other induced dipoles. 

The local field acting at a given bond was defined as the applied field plus the in- 
duced field arising from polarization of all charges except the bond itself. This differs 
in its definition from the conventional local field effect' of semiconductor dielectric 
theory (appendix A). Induced fields vary on the scale of interatomic distances in the 
solid, but the simple approximation of weighting the induced field along a bond by 
the charge density of the bond orbital gives an average h a f  field for the whole bond, 
when added to the applied field. 'Dressed' polarizabilities, an,jj, and hyperpolariz- 
abilities, & i i i k ,  , Y ~ , ~ ~ ~ ~  (appendix B), for the nth bond pair are obtained by fitting 
induced dip0 es UI the bond orbitals p, ,  to the expression 

C H Patterson et a1 

~ , , i = ~ o ( a , , i j E j  + P , , ; j , E j E , + . . . )  (4) 

where Ej and E, are components of the applied field, E. 'Bare' polarizabilities, 
Q' .. and hyperpolarizabilities, pk,ijk, & j k , ,  which have been corrected for in- 
du&' fields in the cluster, are calculated (equation (4)) by fitting induced dipoles 
using the average local field, 8, rather than the applied field. 

Having obtained such bare polarizabilities for the necessary bond types, they may 
be used to calculate the response of a macroscopic surface or bulk solid. In doing so 
we must again take account of the dipolar interactions. In a model of a macroscopic 
solid surface or bulk, a bare bond polarizability matrix (appendix B) is placed in 
the centre of each bond, the 'active site' of the ISM model. The local field resulting 
from the linear response at each of N bond sites is obtained by solving 3N h e a r  
equations which incorporate dipolar interactions between bond sites and give the 
induced dipole of the nth bond, p,, in an applied field, E, which may be constant 
or varying in space (equation 5) 

where is the bare polarizability matrix of the nth bond, nmn is a unit vector 
from the mth bond directed towards the nth bond, rmn is the distance behveen the 
mth and nth bonds and pm is the dipole at the mth bond. These equations can be 
solved either for a large but finite cluster, or with periodic boundary conditions. Bare 
polarizabilities for the S i s i  bond, coupled via dipolar interactions as in (5) in the 
presence of a static, sinusoidal applied field with wve vector q, are currently being 
used to obtain the static dielectric constant of bulk silicon [31], 

lim 1 
9 - 0 e - - ' ( q ' , q ; O )  

in order to test the reliability of this approach to dielectric response in semiconductors. 
In this way the computation of the linear response is reduced to appropriate cluster 
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calculations followed by solution of a set of linear equations: if bond parameters 
prove to be reproducible from one solid to another for a particular bond type, then 
only the linear equations remain to be solved. 

?b obtain the non-linear response, hyperpolarkability matrices are placed at the 
bond sites and the local field from the linear response calculation is used to obtain the 
non-linear response. This assumes that the non-linear polarization from hare hyper- 
polarizability sources is small enough to be considered as a perturbation: otherwise a 
new set of equations incorporating hyperpolarkabilities might be solved by iteration. 
Single-cluster calculations for the systems studied here require ahout 15 minutes of 
computer workstation CPU time and a similar amount of time is required to solve the 
linear equations. 

In the present paper, non-linear susceptibilities are obtained for macroscopic sur- 
face bilayers of the two surfaces studied by summing dressed hyperpolarkabilities in 
the surface unit cell. The local field is not taken into acmunt in these susceptibili- 
ties. In a later paper the local field will be considered in the macroscopic non-linear 
response in the manner described above. Linear and non-linear hare bond matrices 
for these surfaces are reported here and used to analyse major sources of non-linear 
polarization in the surfaces. 

4. Method OP calculation 

Calculations for the hydrogen molecule are first briefly described, which illustrate tbe 
method. Description of the method is then extended to clusters and calculation of 
local fields. 

A hydrogen molecule is placed so that its bond axis is collinear with two remote 
charges of opposite sign so that it experiences a constant static field. The nuclei are 
held hed at the equilibrium internuclear separation and the electronic wave function 
is computed in the presence of the field. This is repeated for several field strengths 
and the molecular dipole is also computed so that the polarization of the molecule is 
obtained as a function of field strength. The molecular polarization is then fitted to a 
polynomial in field strength whose coefficients are cr i i ,&,k , -y i jk l , .  . . (equation (4)). 
Note that the hydrogen molecule is centrosymmetric and p = 0. These polarizabil- 
ities and hyperpolarkabilities are given in table 1 for several basis sets. The other 
elements of the polarization matrices are calculated by placing the remote charges 
perpendicular to the bond axis. A trivial but instructive result for the first hyperpo- 
krizability of a model system can be obtained by transferring a tenth of the hydrogen 
nuclear charge from one nucleus to the other, producing a ‘hydrogen’ molecule which 
is still neutral but now has one slightly more electronegative atom and one slightly 
less electronegative than a ‘real’ hydrogen atom. The first hyperpolarizability for 
this modified molecule parallel to the bond axis is non-zero since it is no longer 
centrosymmetric. The hyperpolarizability tensor for this molecule is given in table 2 
for a single basis set The first hyperpolarizability tensor for this system bas only 
hyo unique, non-zero elements (appendix B). It will be shown that the second-order 
polarization of an independent, asymmetric bond in a cluster can also be described 
by a small number of elements whose physical interpretation is clear. 

The local field acting on each bond orbital with an external field applied k 
calculated after the self-consistent calculation is completed. This is done by removing 
the bond orbitals of the bond in question from the converged total wave functions, 
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Tabk l. Ham-Fwk Satic polarizabilities (e) and scoDnd hyperpolarkabilities (7) for 
the hydrogen moleculea. 

2s 10.48 
BlP 10.24 
M P  11.90 
462p26 8.44 3.86 
Extended 11.90 853 484 4.00 
Experiment ll.w 8 5 3 C  4 = 4.574 

Ihc L and I axes are parallel and perpendicular to the molecular mer, lespectively. 
Some non-zero elements in the y-tensor have MI been calculated. 

Full basis set details are given in a p p d k  B. 
?he thmretical valuer were shown to have mnverged for these atended basis SCLP 

i = (871111 + 12?irl[ 11 t 37’11 11 11 11)/15 tal. 
(471. 

Tabk 2 Hanreo-Fofk first hyperpolarizabililier U), in uniu of 
modified hydrogen molecule using the 4s2p basis set. 

m4 V-’ [or a 

L L  1’1’ [[I[ 1‘11 111 1’1 
~ ~~ 

~ 

I ao 0.0 ao 0.0 -a4 ao 
11 ao 0.0 0.0 -a4 00 ao 
I( -a4 -a4 -16 ao 0.0 ao 

~ 

A The molecule was modi6ed bj wansferring 0.1 proton charge h m  one nucleus to the 
Other along the p i f i v e  11 axis. I and I’ refer to WO onhogonal axes perpendicular to 
the band axis. 

with and without an appIied field, then calculating the electric fields along the bond 
axes: the difference between these two fields is the induced field. As defined above, 
the local field acting at a point on the bond axis is the applied field plus the induced 
field. The average local field is taken as the mean of the induced field at ten points 
along the bond axis, weighted by the bond orbital charge density at those points. This 
field, E,  is then used to extract the bare bond matrices (equation (4)). Sometimes 
the averaged induced field strength is of similar magnitude to the applied field, even 
in directions perpendicular IO  he applied fXd, which emphasizes the importance of 
induced fields in describing how the bond charges interact when they are polarized. 

5. Results 

lbo coordinate systems are used in the next section, surface and bond mordinates, 
illustrated in figure 2 Surface coordinates are appropriate for surface susceptibilities 
while bond coordinates are used for bond polarizabilities. 

Selfconsistent GVB wave functions were computed for clusters representing the 
Si(ll1) 1 x 1 As- and Ga-terminated surfaces, as illustrated in figures 3 and 4 by the 
cluster structures and valence bond orbitals for the Si-& and Si-Ga bond pairs and 
the As lone pair. These wave functions were successively computed for applied fields 
in the I, I!, z, (I and y), (I and z), and (y and z )  directions in surface coordinates; 
details of computations are given in appendix C In order to have a non-linear 
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Q u r e  2 D i i g ”  showing (a) surface mordinates * single for a whole Si-As duster OT Si-Ga and bond. (b) bond coordinates tor a 

polarization large enough to be distinguished from numerical errors in computed 
polarizations, field strengths - lo8 V m-’ were used, which are approximately ten 
times greater than typical experimental values [ll]. Tes.ts showed that the non-linear 
coefficients obtained were the same when a field strength ten times greater was 
employed. Dressed polarizability matrices obtained from this culve fitting are given 
in table 3. Note in particular that the bond matrices are not symmetric, so the 
bond response does not satisfy Onsager’s principle [32], which requires that the bond 
polarizability matrices be symmetric 

n , j i .  (6) a ..=a n , ~  

This principle is, of course, satisfied by the whole cluster but not, at this stage, 
individually by its oomponent parts, the valence bond orbitals, since they interact 
strongly as they polarize in an applied field. The consequence of this for dressed 
bond parameters is that they are dependent on the environment and cannot be 
transferred from one solid to another or from cluster to solid. For the analysis that 
follows it is postulated that bond pairs, in their responses to applied fietds, interact 
predominantly through the (classical) induced fields that they exert on one another, 
as they polarize in an applied field. This is reasonable for bond pairs, which must be 
in separate regions of space because of Pauli exclusion. 

Tpbk 3. Drased polarizabilities [or (a) Si-As and @) Si-Ga bonds in bond mordinates, 
and (c) the As lone pair in surfact mordinates, in units of m3, 

(0) I‘ II (4 1 I’ II (4 = Y z 

I‘ 0.0 a9 0.0 I’ 0.0 16.9 0.0 0.0 18.1 ao 
11 8.4 0.0 36.1 11 8.3 0.0 39.2 T 0.0 a0 15.0 

I 6.4 ao 1.4 I 5.8 0.0 -13.4 I: 185 a0 a0 

The induced field and bond charge density along the Si-As bond in the Si,AsH; 
duster (where H” is a modified hydrogen atom; see appendix C) are shown in figure 5, 
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QUE 4 A schematic diagram (0) d the &Cia%= duster and mntour plow of (b) the 
Si-Ga bond OVB orbitals Contour inlervals are (LO2 au. 

Tmbk 4 Ease polarizabiities for (4) Si-As and (b) Si-Ga bonds m bond mrdiiats,  
and (c) lhe As lone pair in surfacc mordinates, in uniw d lo-'' m3. 

(4 A I' II (4 1 I' II (C) U z 

I 61 ao 0.7 I 11.5 0.0 sa  14.4 ao 0.0 
I' OB 7.1 ao 11 0.0 11.4 0.0 0.0 13.6 ao 
11 -0.4 ao ua 11 2 4  0.0 16.8 z 0.0 0.0 120 

hyperpolarizabilities are obtained by equating the quadratic polarization of bond 
orbitals to the hyperpolarkability for particular field directions. When average local 
fields are used to extract bare bond hyperpolarizabilities in (4), a system of linear 
equations must be solved that depends parametrically and quadratically on average 
local fields. A symmetry present in static susceptibilities is therefore used to simplify 
the extraction of bare hyperpolarizabilities. For an electronic system in the lossless 
re&ime, all x$! tensor elements that are related by a rearrangement of the order of 
the subscripts are equal in magnitude and sign: 

etc. 

This is Kleinman's conjecture [33] and tensor elements related in this way obey Klein- 
man 'symmetry'. A reduced set of linear equations is then solved in which elements 
related by interchanging the last two indices are equated. This is expected to improve 
the accuracy of bare hyperpolarizabilities which can only be obtained when fields have 
been applied in two orthogonal directions. Note that some hyperpolarizabilities, which 
should be zero by symmetry, are small but non-zero (3 (0.1-0.2) x m4 V-l) 
through the limitations of numerical accuracy of the method. These have been en- 
tered as zeros in the tables so as not to detract from the information being conveyed. 
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Dressed Si-As and S i  bond matrices and the As lone pair tensor are given in 
table 5. When the matrices are extracted from the same bond polarization data using 
the average local field and imposing Kleinman Symmetry, the bare hyperpolarizability 
matrices shown in table 6 are obtained. 

'hbk 5. Drcrxd hyperpolarkabilities for (U)  Si-As and (b) Si-Ga bond pain in bond 
coordinates, and (c) Ihe As lane pair in surface mrdinates, in units of m4 V-'. 

(0) II I'I' 1111 1'11 I l l  1'1 

I' 0.0 0.0 ao -ai 0.0 -0.1 
11 -5.0 -1.0 12s ao -1.9 0.0 

o.o -o,6 o , o ~  ~ ~~~ ~~~~ ~ ~~ ~~~~ I -0.9 13 

(b) II 1'1' 1111 1'11 111 1'1 

~ ~ ~~ L -3.8 3.8 -1.7 0.0 -9.1 ao 
L' 0.0 0.0 0.0 -a7 0.0 0.3 
11 4.1 -a7 od oa 9.6 0.0 

(c) 22 yy 22 zy 2s z y  

s -1.1 1.7 0.0 0.0 -38  0.0 
y 0.0 0.0 0.0 -3.8 0.0 1.1 
z -53 -7.0 -28 0.0 0.0 0.0 

Bond polarizabilities are not used to calculate a surface dielectric susceptibility, 
since to how many layers deep such a susceptibility would extend is not well defined. 
However, it is more reasonable to assume that the second-order polarization is much 
more localized at the surface. Surface second-order susceptibilities, ~ ( ~ 1 ,  are calcu- 
lated by summing over the bond pair and lone pair dressed hyperpolarizabilities for 
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Tnbk 6. Bare ~ ~ l a ~ b i l i t i e s  for (a) Si-As and (6) Si-Ga bonds in bond mrdinatq 
and (c) the As lone pair m surface mrdinatea, in units of m4 V-I. 

(a) 1I 1'1' IIII 1'11 111 1'1 
~~ 

I -a6 1.0 0.2 0.0 -a6 a0 
11 0.0 ao 0.0 -a7 ao 1.0 
11 -0.6 -a7 13 ao 0.2 ao 

(b) 11 1'1' 1111 1'11 111 1'1 

I 02 8.7 -a7 ao -1.9 ao 
1' 0.0 0.0 ao -1.4 ao a7 
11 -15 -1.4 1.1 ao -a7 ao 
(E)  El: yy 22 2y 22 2y 

E -0.7 0.9 0.0 ao -14 0.0 
y 0.0 0.0 0.0 -3.9 0.0 a 9  
z -14 -3.9 -21 0.0 ao 0.0 

both surfaces. Surface x ( ~ )  matrices, the sum of bond hyperpolarizability per unit 
surface area, are given in table 7 m m2 V-l. 

lhbk 7. Surface x(') mavices for (0) Si& and (b) SiaGa bilayers, in units of 
lo-*' In2 v-1. 

(0) 2s YY I2 r y  zl: z y  (b) EZ yy 22 zy 22 l:y 

z 3.1 -17 0.0 0.0 -23 ao 27 -26 0.0 0.0 a6 ao 
Y 0.0 ao ao -26 0.0 -3.7 0.0 0.0 0.0 11.0 0.0 -1.1 
I -5.6 -5.1 1.7 0.0 0.0 0.0 -23 -25 3.4 0.0 ao ao 

6. Discussion 

The sources of linear and non-linear polarization at surfaces can be analysed more 
easily in a bond framework than the conventional band framework. The bare matri- 
ces are the appropriate quantities in discussing the bond response and the dressed 
quantities are the relevant ones for the response of the whole system. 

Tiable 1 shows static polarizabilities and hyperpolarkabilities for the hydrogen 
molecule for several basis sets at the Hartree-Fock level. Theoretical studies of 
these quantities for the hydrogen molecule, which incorporate electron correlation, 
have shown that this is much less important than an adequate basis set in obtaining 
accurate calculated values [34]. This is borne out by table 1 since good agreement 
with both experiment, and extended basis set calculations that incorporate electron 
correlation, is obtained using a double-( valence plus double-( polarkation hasis set. 
Molecular hydrogen is the only molecule that contains an 'isolated' chemical bond: 
all other molecules contain more than one electron pair which mutually polarize each 
other via fields induced in the presence of an applied field. This is contained in the 
dressed polarizabilities of table 3, hut the bare polarizabilities of table 4 represent 
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the polarizability of a bond in the absence of mutual polarization. For the Si-As 
bond, the bare a;,, a:,,, and ailII components are 61, 7.1 and 15.0 x m3, 
respectively, compared with 84, 8 4  and 11.9 x m3 for H-H. The diagonal 
elements of polarizability of the Si- bond are similar in magnitude to those of 
the Si-As bond, except for somewhat larger CY;, and a;,,, components. The bare 
polarizabilities for the surface bond pairs are similar in magnitude to those of the 
hydrogen molecule, and these are enhanced by the bcal field in the surface or 
duster to give larger dressed polarizabilities. The offdiagonal elements of the bare 
polarizability matrix ought to be zero if the bond charge density has a ‘cigar shape’ 
and the major polarizability matrix axis lies along the cigar axis. mom table 4(a) it 
can be Seen that this k so for the Si-As bond. Inspection of the Si-& bond orbital 
amplitudes in figure 3 shows that the bond charge density has approximately this 
cylindrical symmetry. In contrast, the Si-Ga bond polarizability matrix (table 4(b)) 
has non-zero offdiagonal elements when the bond mrdinate system of axes is used. 
me offdiagonal elements are much reduced, however, when the axes are rotated to 
surface coordinates This is reflected in the orbital character of the Si-Ga bond in 
the GVB wave function and is a result of strain in this surface structure. The bond 
lobe localized on the Si atom is comparable to the equivalent lobe in a S iSi  bond 
or the Si-& bond, but the lobe localized on the Ga atom is unusual. It extends 
from the Ga atom nearly parallel to the surface. This bond is bent because the 
Ga atom cannot form three ideal ’sp2-hybridized’ bonds to silicon-the positions of 
Si atoms in the Si(ll1) surface constrain the geometry that the Si-Ga bonds can 
attain, resulting in Si-Ga bonds signifcant& shorter than the sum of the Si and Ga 
covalent radii but with their charge density bent outwards from the surface. The bare 
bond polarizability matrix consequently has non-zero offdiagonal elements in bond 
coordinates. The bent charge density profile of the Si-Ga bond also has consequences 
in the bond hyperpolarizability tensor. 

In table 2 first hyperpolarizabilities for a modsed, acentric & molecule were pre- 
sented. The cylindrical symmetry of the molecule requires that ql,, = pll,,,,. From 
Kleinman symmetry, 41LL = pLIIL and pll,,,, = p,811,, and so aff these elements 
are equal. pll II II is the other unique element: it corresponds to the hyperpolarizability 
parallel to the bond axis, with a field applied parallel to that axis. It has the same 
sign as the other elements and is four times larger. So, for the simplest, hypothetical 
acentric chemical bond a combination of symmetry requirements and Kleinman sym- 
metry lead to only WO unique elements in the bond first hyperpolarizability tensor, 
with the tensor being dominated by the pll II II element 

lbrning to the more complex systems, dressed hyperpolarizabilities, in bond co- 
ordinates, for the Si-As and Si-Ga bonds were given in table 5, along with dressed 
hyperpolarizabilities for the As lone pair in surface coordinates. pNIII is the domi- 
nant element for the &As bond, as is the case in the modified H- molecule. The 
dressed Si-& hyperpolarizability matrix has the correct symmetry for a bond with a 
single mirror plane (appendix B). Likewise, the Si-Ga bond and As lone pair matrices 
satisfy the symmetry requirements for a bond with a single mirror plane, and a pair 
with 3771 point group symmetry, respectively. However, deviations in magnitude occur 
for elements of the lone pair matrix which ought to be equal. The dressed lone pair 
and bond pair matrices do not conform perfectly to Kleinman symmetry. Imperfect 
conformation of dressed hyperpolarizability matrices to Kleinman symmetry is a result 
of separating the whole cluster into pieces and is not because of limited accuracy of 

C H &emon a a1 
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the method; the whole duster conforms very well to Klcinman symmetry in a static 
field. 

More may be learnt about the non-linear properties of the bond from the bare hy- 
perpolarizabilities than the dressed versions, as was the case for polarizabilities, but it 
should be recalled that the bare hyperpolarizabilities are extracted with the constraint 
that they obey Kleinman F e y .  Ftom table €(a) it can be seen that the element 
pi II II is still the largest for the Si-& bond, but it is not dominant. (Recall that in se0 
tion 2, bare. and dressed quantities were distinguished by adding a prime in the latter 
case.) In addition to elements that produce a non-linear polarization parallel to the 
bond axis, there are also elements that produce a non-linear polarization along the I' 
axis, perpendicular to the bond. l%r a bond of perfect cylindrical symmetry, all ele- 
ments, except p;lll and p;,l,II, responsible for non-linear polarization perpendicular 
to the bond are zero, but the charge density in the Si-As bond is slightly bent inwords 
[ZO], so there. is a non-zero element: a field parallel to the solid surface but 
perpendicular to the bond (along I') will produce a non-linear polarization in the I 
direction, outwards from the surface but perpendicular to the bond. Elements of the 
dressed hyperpolarizabdity matrices are quite different in magnitude and, sometimes, 
in sign, but the bare matrix elements of the Si& and S i G a  bonds are similar! The 
piIIII elements are comparable for both Si-& and Si-Ga bonds in magnitude and 
sign. The piLL and pil,,,, elements for either bond are approximately equal (as 
they ought to be for a cylindrical acentric bond (appendix B)) but differ in magnitude 
between bonds by a factor of 2, the Si-Ga bond giving the larger response. The 
&,,, element has a value of 1.0 x m4 V-I for the Si-As bond. The same 
element has a much larger value of 8.7 x m4 V-' for the Si-Ga bond, and is 
the dominant element in the bare matrix. This is another consequence of the highly 
noncylindrical charge distribution of the Si-Ga bond, mentioned earlier in this sec- 
tion. Recall that this element is zero by symmaty for a perfectly cylindrical bond. 
This element is also relatively large in the dressed matrices, so the large values in the 
bare matrices are not an artifact of the way in which these matrices are extracted. It 
is clear that, for bonds in lowered symmetry situations such as surfaces, a bond hy- 
perpolarizability can depend strongly on its environment $351. Matrix elements which 
become non-zero through symmetry lowering can actually dominate the non-linear 
response, in mntrast to the response of the acentric bond with perfect cylindrical 
symmetry (modified HZ molecule) for which the pll II II efement is the largest 

The bare hyperpolarkability matrix for the lone parr has 3m point poup sym- 
m e y .  Its largest elements (in surface coordinates) are Fz,= and piyv:  when a field 
is applied perpendicular to the lone pair symmetry axis, the lone pau .z expectation 
value is reduced as it polarizes along I or y directions. There is no linear a,, or 

lone pair polarizability by symmetry, so all such polarization is non-linear. The 
pLZz component is the other major component of lone pair hyperpolarizabdity. 

The non-linear polarization can cancel or reinforoe behveen dzerent pairs and 
it is the sum of all pairs that gives the overall non-linear response. The surface 
x@) matrices, which are obtained when bond pair and lone pair hyperpolarizabili- 
ties are summed 'in surface mordinates, are now described. The surface non-linear 
susceptibility is the hyperpolarizability per unit surface area, and it is t h s  quantity 
that may be compared to SHG experiment. k r  a homozeneous surface one would 
expect the greatest component in x ( ~ )  to be x$%, because it is along the z duec- 
tion, perpendicular to the surface, that inversion symmetry is broken. "his has been 
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assumed in recent models of SHG at surfaces of nearly-free-electron metals [36] and 
semiconductors [14]. In ‘StNctured’ surfaces, such as semiconductor surfaces with 
valence charge localized in directional bonds, this is not the case as demonstrated by 
the results given above. For the Si(ll1) 1 x 1 As surface, cluster models predict that 
the largest elements are xzzz  (a )  and They have major contributions from the 

pll and pLL,A, elements of the dressed bonds. The xlzr and xzvv elements have 
their major contribution from the pi I element of the dressed bonds. The x:”), ele- 

responses. The %(Ill)  1 x 1 As surface x ( ~ )  matrix obeys 3m point group symmetry 
well, but elements which ought to be identical by Kleinman symmetry, differ by a 
factor of 2 This arises because the twelve Si-H” cluster-terminating bond pairs have 
been separated from the Si-& bond pairs and the As lone pair. 

For the Si(ll1) 1 x 1 Ga surface there is a similar pattern to that for the As- 
terminated surface.. The xIrI, xzyv ,  xzzZ and xi”?, elements are all smaller than 
in the As-terminated surface but the x% element is larger by a factor of two. This 
is reasonable because the cancellation between the lone pair and bond pairs in the 
&-terminated surface is absent in the Ga-terminated surface. A disturbing feature 
of this x@) is gross violation of Kleinman symmetry: ~ $ 2 ~  and x%, and xi”?, 
and xVJv differ in magnitude by factors of N 4 and are opposite in sign whereas 
they should be identical in order for Kleinman symmetry to hold. Again, this arises 
because the twelve Si-H= duster-terminating bond pairs have been separated from 
the central electron pairs. 

n e  theoretical values presented in table 7 may be compared to experimental 
values for Si surfaces, either clean or with adsorbed As. Absolute measurements [15] 

agreement with the values reported in table 7. 

C H ~ ~ r e s a n  et a1 

(2) (2) 

ment is smaU because of near can= \ I  ation of the lone pair and bond pair non-linear 

(2) (2) (2) 

of the SHG intensity have found responses in the range (2-7)x10-*’ ma V-* in good 

I. Summary and conclusions 

Polarizabilities and hyperpolarizabilities of bonds in hvo semiconductor surfaces have 
been extracted from induced dipoles of localized GVB bond orbitals in static applied 
fields. If the field acting on each bond pair is assumed to be the applied field, 
dressed matrices are extracted that violate Onsager’s principle, and do not reflect the 
symmetry of the GVB orbitals. On the other hand, if the fields that are generated 
by each polarized bond are combined along with the applied field to produce an 
average local field, the polarizability matrices satisfy Onsager‘s principle much better 
and the hyperpolarizability matrices have the symmetry of the GVB orbitals. ‘Bare’ 
hyperpolarizability matrices extracted in this way are analysed as sources of non-linear 
polarization in each of the surfaces studied. In general, the pi I, II matrix element of 
an acentric, cylindrical bond pair is dominant, but in situations where the cylindrical 
symmetry of a bond pair is broken (the bond is ‘bent’), such as in surface structures, 
other matrix elements that are otherwise zero by symmetry may become large and 
may dominate the hyperpolarizability matrix. Surface non-linear susceptibilities may 
be generated from dressed bond hyperpolarizabilities by summing over the bond 
pairs in a representative cluster. Unlike in the case of an electronically homogeneous 
(metallic) surface, the largest surface x ( ~ )  element of a semiconductor surface is 
not necessarily xi%)=. For the Si(ll1) 1 x 1 As surface the order of inequivalent 
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> x $ 2  while for the si(111) I x I ~a surface the order 
> xzzz (2) > &)= (neglecting anomalous xl"), and 

elements e xi"!, > 
of inequivalent elements is 
xImr (2) elements). 

CIuster methods for obtaining non-linear susceptibilities of solids are an attractive 
alternative to band-structure methods. They are computationally efficient, and in the 
case of systems with very large unit cells they may present the only practicable means 
of calculating the non-linear electric susceptibility. 
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Appendix A. Definitions of units and local fields 

SI units have been used throughout. Bulk polarization is in C m-*. For a bond 
it is not possible to give a polarization per unit volume since the 'volume' of the 
bond is not well defined. Hence bond-induced dipoles are in units of C m and 
the bond polarizability and iirst hyperpolarizability are in units of m3 and m4 V-', 
respectively. The bulk secondader susceptibility in these units is m V-' while the 
surface second-order susceptibility is in m2 V-' . 

The local field that we use to extract bare parameters for bonds is the same as 
the local field acting on an ion in Ashcroft and Mermin's 'theory of the local field' 
[37l. This is, 'the microscopic field at the pasition of the ion pond], diminished by 
the contribution to the microscopic field from the ion [bond] itself'. The microscopic 
electric field, e ( s , t ) ,  in a solid is the field, rapidly varying in time and space, pro- 
duced by the instantaneous positions of the electrons and nuclei. The macroscopic 
electric field, E(s,t), appearing in the macroscopic Maxwell's equations is the spa- 
tially averaged microscopic field [38]. This local field di[fers from another 'local field 
effect' frequently encountered in discussions of the dielectric response of semicon- 
ductors and insulators [39]. There, the contributions of offdiagonal elements in the 
inverse dielectric function, which relates the potential seen by a test charge to an 
applied potential (quation (Al)), 

V , , ( Q ' , W )  = c - ' ( 9 ' , q ; W ) K p p ( 9 , W )  ('49 
are attributed to local field effects'. 

Appendix B. Symmetries in bond parameter matrices and surface susceptibilities 

The linear induced dipole, p( ' ) ,  of a cluster may be expressed as a sum over bonds 
via 



4034 

where p'." b the linear induced dipole of the nth bond, an is the dressed polariz- 
abiity matrix of the nth bond and E is the applied field. The a, matrices differ 
by bond type and by bond orientation; only when bond type and bond orientation 
mincide will the polarizability matrix be. the same. The induced dipole of each bond 
b 

C H " s o n  e~ a1 

p('). n.8 = a n , i j E j .  032) 

Fbr an isolated body, Onsager's principle 1311 requires that the matrix with element 
be symmetric (equation (6)). The shapes of GVB bond pairs (mmbined pairs of 

GVB bond orbitals) shown in figures 3 and 4 are ellipsoidal, the principal axes lying 
along, and perpendicular to, the bond axis. Because of the almost symmetrical c4arge 
distribution of a bond pair about these axes, the axes of the representation quadric 
of the bare bond matrix [40] are expected to mincide with the bond axes. 

The quadratic induced dipole of a cluster, #), may also be expressed as a sum 
over bonds: 

where p c )  is the quadratic, dressed polarization of the nth bond, 0, i$ a Wid-rank 
teosor for the nth bond and E is the applied field. The quadratic induced dipole of 
each bond is given by 

Since no physical significance can be attached to an exchange of Ej and Ek, pijk = 
&., the tensor can be reduced to a 3 x 6 matrix, dij, so the vector mmponents of 
&) are given [41] by 

1 E? \ 
E; 

d11d12d13d14d15d16 

d31 d32d33d34d35d36 

= ( 41d22d23d24dZsd26) [ 2 E, E: E, J (85) 

2EsEz 
2 E, E, 

where the subscripts jk have been replaced by a single symbol: 11 or xx 5 1; 
1'1' or yy 2; 11 11 or z z  3; 1'11 111' 4 or yz = zy 4; 1'11 111' 5 
or xz z i  5; 1'1 II' = 6 or xy yx = 6. The non-linear susceptibility 
matrices given in tables 2, and 5 to 7 are dij matrices of this form. Apart from 
Kleinman symmetry, there are symmetries imposed on the d i j  matrix by the point 
group of the cluster or solid surface. Matrix symmetries for the non-linear response 
of clusters with 3m point group symmetry and individual bond pairs with m point 
group symmetry are given below in a standard notation to be described. Large dots 
indicate non-zero elements, small dots are elements which are zero by symmetry. 
Dots that are joined by continuous lines are elements which are equal in magnitude; 
two dots joined in this way that are filled and unhlled are elements opposite in sign; 
if they are both filled or unfilled they have the same sign. 
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The clusters studied (and surfaces that they represent) have 3m point group 
symmetry. The d i j  matrix for the response of the entire cluster or the surface ought 
to have the symmetries: 

Each of the clusters possesses 3m symmetry, as do their Mal wave functions (producfx 
of spatial orbitals and spin functions), but each of the bond pairs is required to possess 
only a single mirror plane (m symmetry). In this case the symmetries of the d i j  matrix 
are 

ie. no non-zero elements are necessarily equal. Provided that the di j  matrix is in bond 
mordinates, if the bond is not bent, it will possess two mirror planes, perpendicular 
to one another, that lie along the bond axis, and the di j  matrix will have 4mm point 
group symmetry. In this case a bond hyperpolarizability can be described by three 
unique elements only (compare the asymmetric hydrogen molecule in table 2): 

( :y: : :J . 

Appendw C. Details of computations and basis sets 

All GVB computations [30] were performed using the GAMESS program [42]. The 
core states of the heavy atoms were replaced by effectivecore potentials (ECP) which 
closely reproduce the allelectron (AE) ground state properties of similar systems to 
these clusters [IO]. This was checked for the systems studied here by computing AE 
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and EB bond polarizabilities of the SiSi  bond. The polarizabilities and induced fields 
found in AE and ECP calculations, with similar valence double-C-plus-polarization basis 
sets appropriate for each core type. were compared for the S i s i  bond in a Si,H$ 
cluster. Bare polarizabilities of AE and ECP calculations differed by 6%; induced 
fields in the region where bond charge density was concentrated were similar. The 
ECP basis se$ for Si (431, As (441 and Cia [44] were the 2s2p bases developed for 
their respective ECPS [43, 441 supplemented by a single-< d polarization function on 
each heavy atom (& = 0.032, CAS = 0.035, CGa = 0.035). The AE basis set 
for Si was the lls7p basis of Huzinaga [45] contracted to 6s4p [&I. The modified 
hydrogen basis, HI, used to terminate the clusters was the single-< basis of Schultz 
and Messmer [ZT. 
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